มาดูกันว่า Amazon ใช้ประโยชน์จาก Big Data อย่างไรบ้าง

A box from Amazon.com is pictured on the porch of a house in Golden, Colorado in this July 23, 2008, file photo. Amazon, through lower overhead, efficient inventory management, and better product selection and search, has dominated online purchases during the festive season. To match ANALYSIS AMAZON-HOLIDAY/ REUTERS/Rick Wilking/Files (UNITED STATES - Tags: BUSINESS)

Amazon ถือได้ว่าเป็นหนึ่งในบริษัทที่บุกเบิกการใช้งาน Big Data มาโดยตลอด Amazon.com เริ่มต้นด้วยการเป็นร้านหนังสือ online เปิดตัวครั้งแรกเมื่อปี 1994 และขยายตัวอย่างรวดเร็วเริ่มขายสินค้าอื่นๆ ด้วย ทั้งสินค้าทั่วไปและสินค้าสื่อดิจิตัล พอปี 2007 ก็เริ่มผลิตสินค้าอิเล็กทรอนิกส์ของตัวเองชิ้นแรกคือ Kindle ในขณะเดียวกันก็เปิดบริการ AWS ในปี 2006

จนถึงปัจจุบันปี 2015 Amazon กลายเป็นบริษัทค้าปลีกรายใหญ่ที่สุดในอเมริกา มีมูลค่าตลาดตามราคาหุ้นแซงหน้า Walmart ไปเรียบร้อยแล้ว ในขณะเดียวกันก็กลายเป็นผู้ให้บริการระบบ cloud infrastructure รายใหญ่ที่สุดด้วย

ระบบแนะนำและจัดส่งสินค้า

ตัวอย่างการใช้งาน Big Data Analytics ในยุคแรกๆ คือการที่ Amazon ใช้ข้อมูลประวัติการเลือกชมและเลือกซื้อสินค้าของลูกค้ากว่า 152 ล้าน account มาสร้างระบบแนะนำสินค้า โดยหาความสัมพันธ์ระหว่างสินค้าที่เกี่ยวข้องกัน หรือสินค้าที่มักมีผู้ซื้อร่วมกัน แล้วนำมาแนะนำให้กับลูกค้า ปรับแต่งตามประวัติพฤติกรรมการซื้อของลูกค้าแต่ละราย ผลลัพธ์ที่ได้ก็คือ ประสบการณ์ช็อปปิ้งออนไลน์ที่น่าประทับใจ

นั่นเป็นเรื่องเมื่อปี 2003 นะครับ ตอนนี้ร้านค้าออนไลน์ต่างก็ใช้วิธีนี้กันหมดแล้ว แต่ Amazon ก็ก้าวหน้าไปอีก ด้วยการจดสิทธิบัตรกระบวนการ “ส่งของก่อนสั่ง” หรือ Anticipatory Shipping ไว้ตั้งแต่ปี 2014 โดยวิเคราะห์ข้อมูลหลากหลายอย่างแล้ว “ทำนาย” ว่าลูกค้ากำลังจะสั่งสินค้าอะไร ทำการจัดส่งสินค้าไปรอที่ศูนย์กระจายสินค้าในเขตนั้น เพื่อที่จะสามารถส่งให้กับลูกค้าได้ในทันทีที่สั่งซื้อ คาดว่าบริการ same-day delivery หรือสั่งวันนี้ส่งวันนี้ที่เริ่มให้บริการในหลายๆ เมืองในสหรัฐ ใช้อัลกอริทึมนี้ในการทำนายความต้องการสินค้า

การให้บริการลูกค้า

การให้บริการลูกค้าเป็นอีกเรื่องที่ Amazon นำ Big Data มาช่วย มีการพูดถึงประสบการณ์ในการติดต่อฝ่ายบริการลูกค้า เมื่อสินค้า Kindle ที่ซื้อมามีปัญหา เพียงไม่ถึงนาทีหลังจากแจ้งปัญหาไปบนเว็บ เจ้าหน้าที่จาก Amazon โทรศัพท์มาหาลูกค้า ทักทายโดยการเรียกชื่อ และถามแค่ว่าคุณมีปัญหากับเครื่อง Kindle อย่างไรบ้าง ปัญหาถูกแก้ไขภายใน 2 นาที โดยไม่ต้องเสียเวลามานั่งสะกดชื่อ ที่อยู่หรือหมายเลขประจำเครื่อง

นั่นหมายถึงว่าเจ้าหน้าที่ Amazon รู้จักลูกค้า รู้ข้อมูลต่างๆ เกี่ยวกับลูกค้าเป็นอย่างดี และสามารถใช้ข้อมูลดังกล่าวสร้างความรู้สึก “เป็นคนพิเศษ” ให้กับลูกค้าได้

เมื่อ Amazon ประกาศขายแท็บเล็ต Fire HDX ในปี 2013 Mayday Button เป็นฟีเจอร์สำคัญ มันคือปุ่มขอความช่วยเหลือออนไลน์ผ่านหน้าจอตลอด 24 ชั่วโมง ผู้ใช้บริการจะได้รับการตอบสนองภายใน 9 วินาที และกลายเป็นช่องทางหลักที่ผู้ใช้ Fire HDX กว่า 75% ใช้ขอความช่วยเหลือในเรื่องต่างๆ รวมถึงเรื่องแปลกๆ อย่างเช่นสอนเล่น Angry Birds ผ่านด่านยากๆ หรือสอนวิธีทำอาหาร เป็นต้น

Amazon ได้รับการโหวตให้เป็นอันดับหนึ่งในด้านการให้บริการลูกค้าติดต่อกันหลายปีจากองค์กรด้านการค้าปลีกของอเมริกา

การจัดการคลังสินค้า

Amazon มีสินค้ากว่า 1.5 พันล้านชิ้น กระจายอยู่ตามศูนย์จัดส่งสินค้ากว่า 200 แห่งทั่วโลก การจัดการ ติดตาม และป้องกันการโจรกรรม สินค้าเหล่านี้ กลายเป็นงานที่ยากและท้าทาย Amazon ใช้บริการของตัวเองคือ S3 (Simple Storage Service) เก็บข้อมูลของสินค้าเหล่านั้นซึ่งมีการปรับปรุงกว่า 50 ล้านครั้งต่อสัปดาห์ และใช้ EMR (Elastic Map Reduce) ซึ่งเป็นบริการ Big Data Analytics ของตัวเอง ในการวิเคราะห์ข้อมูลสินค้าเหล่านี้ และส่งผลกลับไปยังศูนย์แต่ละแห่ง พร้อมผลการวิเคราะห์ว่าสินค้าใดบ้างที่มีความเสี่ยงต่อการถูกโจรกรรม

ขายข้อมูลให้นักโฆษณา

ในขณะที่ Google ขายข้อมูลพฤติกรรมการค้นหาข้อมูล แต่สิ่งที่นักโฆษณาอยากได้จริงๆ ก็คือ ข้อมูลพฤติกรรมในการซื้อสินค้า ซึ่ง Amazon มีข้อมูลเหล่านี้ และเริ่มหารายได้จากการขายข้อมูลเหล่านี้ให้นักโฆษณานำไปใช้ในการประกอบการตัดสินใจเลือกซื้อโฆษณาในช่องทางต่างๆ ธุรกิจส่วนนี้ยังคงมีรายได้น้อยเมื่อเทียบสัดส่วนรายได้ทั้งหมดของ Amazon แต่คาดว่าจะเติบโตขึ้นอีก และที่สำคัญ Amazon ไม่ได้เปิดให้นักโฆษณาเข้าถึงข้อมูลดิบโดยตรง แต่พัฒนาเทคโนโลยีแพลตฟอร์มขึ้นต่างหาก แล้วเปิดให้นักโฆษณาประมูลสล็อตโฆษณาแทน

สรุป

Amazon ต้องถือได้ว่าเป็นผู้นำในการบุกเบิกนวัตกรรมการนำ Big Data มาใช้ในธุรกิจ การที่ Amazon มีธุรกิจค้าปลีกเองและมีความสามารถในการพัฒนาเทคโนโลยีต่างๆ เองด้วย ส่งผลให้มันอยู่ในสถานะที่ได้เปรียบธุรกิจอื่นโดยทั่วไป คงต้องรอดูต่อไปว่า จะมีนวัตกรรมอะไรดีๆ ออกมาอีก

 

ข้อมูลเพิ่มเติม

 

Microsoft เข้าซื้อกิจการ VoloMetrix สตาร์ทอัพด้านการวิเคราะห์ข้อมูลบุคลากรในองค์กร

VoloMetrix_Sociograph_on_iPadMicrosoft ประกาศเข้าซื้อกิจการบริษัท VoloMetrix สตาร์ทอัพด้านการวิเคราะห์ข้อมูลบุคลากร โดยมีแผนจะนำเทคโนโลยีการวิเคราะห์สภาพองค์กรเข้าไปเพิ่มในชุด Office 365

ตลาดเทคโนโลยีวิเคราะห์องค์กรในระดับ enterprise กำลังเติบโตอย่างรวดเร็ว โดยเน้นไปที่การทำความเข้าใจถึงวิธีการที่จะปรับปรุงประสิทธิภาพการทำงานประจำวันของพนักงาน ช่วยเพิ่มความสุขและเพิ่มประสิทธิผลในการทำงานของทั้งองค์กร แนวคิดหลักคือการใช้เทคโนโลยีมาวิเคราะห์รูปแบบการทำงานและรูปแบบการสื่อสารของคนในองค์กร ก็จะสามารถใช้ความเข้าใจที่ได้ มาช่วยในการพัฒนาการสื่อสารกับพนักงานและให้คำแนะนำแบบเฉพาะตัว ให้พนักงานทำงานได้ดีขึ้นได้

ทางไมโครซอฟต์แถลงว่า บริษัท VoloMetrix เป็นผู้บุกเบิกและเป็นผู้นำในตลาดการวิเคราะห์ข้อมูลองค์กร โดยการวิเคราะห์ตารางปฎิทินและอีเมล์ของพนักงาน เพื่อประเมินประสิทธิภาพการทำงาน และไมโครซอฟต์วางแผนจะนำเทคโนโลยีของ VoloMetrix ไปเสริมความสามารถด้านการวิเคราะห์ในชุด Office 365

VoloMetrix Enterprise Analytics from Nathan Barnett on Vimeo.

ในวิดีโอข้างต้น มีประเด็นที่น่าสนใจมากประเด็นหนึ่ง คือสามารถวัดลักษณะการ “สื่อสาร” ภายในองค์กรได้ ซึ่งมีประโยชน์มากสำหรับองค์กรขนาดใหญ่ที่มีความซับซ้อน

ที่มา: Microsoft acquires people analytics startup VoloMetrix, will integrate organizational tech into Office 365

 

เมื่อ Big Data หลุดโผ Gartner 2015 Hype Cycle

04fb9cf

Gartner ออกรายงาน Hype Cycle สำหรับปี 2015 เมื่อช่วงกลางเดือนสิงหาคมที่ผ่านมา และที่น่าแปลกใจสำหรับหลายๆ คนคือ Big Data หลุดออกจากรายการเทคโนโลยีที่น่าจับตามอง หลังจากอยู่ในรายงานนี้มาหลายปี

หลายคนใช้ Gartner Hype Cycle เป็นเครื่องมือเพื่อจับตามองเทคโนโลยีใหม่ๆ มานานหลายปี ซึ่งทำให้เราเข้าใจได้ว่าเทคโนโลยีใหม่ๆ ตัวไหน ที่สามารถฟันฝ่าพ้นช่วง “ตื่นกระแส” มาได้และจะส่งผลอย่างจริงจังต่อชีวิตและการทำงาน

เราได้เห็น Big Data อยู่ในรายงานนี้มาหลายปีแล้ว ปี 2014 ที่ผ่านมาเป็นจุดที่เทคโนโลยี Big Data ก้าวข้ามจากสถานะที่เรียกว่า Peak of Inflated Expectations และเริ่มเข้าสู่ช่วง Trough of Disillusionment ตอนแรกก็คาดว่ามันจะไหลลงไปอยู่จุดต่ำสุดหรือถ้าดีหน่อยก็คงเริ่มย้อนกลับมาเข้าช่วง Slope of Enlightenment

Hype-Cycle_2015_1

แต่ปรากฎว่าคำว่า Big Data หายไปจาก Hype Cycle ของ 2015 นี้เลย รวมถึงเทคโนโลยีที่เกี่ยวข้องบางตัวอย่างเช่น Prescriptive Analytics และ Data Science วิดีโอสัมภาษณ์ผู้เขียนรายงาน ให้เหตุผลว่า เป็นเพราะ Big Data ใช้กันอย่างแพร่หลายมากขึ้นและหมดสภาพการเป็น emerging technology แล้ว

ที่น่าสังเกตอีกประการหนึ่งก็คือ จำนวนเทคโนโลยีที่แสดงอยู่ในรายงานลดลง เหลือแค่ 37 เทคโนโลยี ในปี 2015 จากที่แต่เดิมมีถึง 44 ในปี 2014, 43 ในปี 2013 และ 46 ในปี 2012

อย่างไรก็ตามมีรายการเทคโนโลยีใหม่ ที่เกี่ยวข้องกับการวิเคราะห์ข้อมูลเพิ่มมาในปีนี้หลายรายการ เช่น Machine Learning, Citizen data science และ Advanced Analytics with Self-Service Delivery และเทคโนโลยีอื่นที่เกี่ยวข้องกับ Big Data Analytics ก็ยังคงอยู่ อย่างเช่น Autonomous Vehicles, Internet of Things และ Natural Language Process Question Answering

ที่มา:

Gartner’s 2015 Hype Cycle for Emerging Technologies Identifies the Computing Innovations That Organizations Should Monitor

Why Gartner Dropped Big Data Off the Hype Curve
Gartner 2015 Hype Cycle: Big Data is Out, Machine Learning is in