ตัวอย่างการใช้ Machine Learning มาเพื่อปรับ business process อัตโนมัติ

jun16-27-124625723

บทความจาก HBR เล่าถึงตัวอย่างการนำอัลกอริทึม Machine Learning มาใช้ในการปรับปรุงกระบวนการผลิต ทั้งแบบ Self-Adapting และ Self-Repairing หรือรวมกันทั้งสองแบบ ตัวอย่างแรกเป็นผู้ผลิตรถยนต์ในเยอรมันที่ใช้ ML มาใส่ในไลน์ประกอบรถยนต์ ทำให้สามารถ customize รถยนต์แต่ละรุ่นได้เป็นล้านรูปแบบ ตามความต้องการของลูกค้าได้โดยอัตโนมัติ

ตัวอย่างที่สองเป็นการปรับปรุงสายการผลิตอะไหล่รถยนต์ ที่ใช้ซอฟต์แวร์วิเคราะห์จุดเสี่ยงในกระบวนการผลิต แล้วปรับเปลี่ยนเพื่อลดปริมาณอะไหล่ที่ผลิตไม่ได้คุณภาพโดยอัตโนมัติ

ตัวอย่างที่สามเป็นงานในด้านการก่อสร้างสะพานข้ามคลองในอัมสเตอร์ดัม ซึ่งก่อสร้างโดยการใช้เครื่องพิมพ์ 3 มิติพิมพ์สะพานมาจากทั้งสองฝั่ง เพื่อให้มาพบกันตรงกลาง โดยมีเซ็นเซอร์หลายตัวคอยส่งข้อมูลสภาพรอบด้านมาให้ เพื่อให้เครื่องพิมพ์สามารถปรับเปลี่ยนตัวเองได้กลางทาง เช่นในกรณีที่ตลิ่งฝากหนึ่งยุบมากกว่าที่คาดไว้ เป็นต้น (ตัวสะพานคาดว่าจะสร้างเสร็จในปี 2017)

ก้าวต่อไปที่จะเกิดขึ้นก็คงเป็น AI ที่บริหารโรงงานได้เอง และสายการผลิตหุ่นยนต์อัตโนมัติเต็มรูปแบบอย่างในหนัง

ที่มา : https://hbr.org/2016/06/business-processes-are-learning-to-hack-themselves

แนวโน้ม Big Data ในปี 2016 ที่ส่งผลกระทบต่อสถาบันการเงิน

big-data_0เมื่อ Big Data กลายร่างจากโครงการที่ฝ่าย IT เป็นผู้ผลักดัน มาเป็นโซลูชั่นที่จะช่วยผลักดันธุรกิจของทั้งองค์กร หน่วยงานในภาคธุรกิจต่างๆ ก็รีบปรับตัวมาใช้เทคโนโลยีนี้อย่างจริงจัง และนี่คือแนวโน้มที่จะส่งผลกระทบต่อสถาบันการเงินต่างๆ

  • ตัวอย่างความสำเร็จที่เห็นได้ชัดเจนมากขึ้นเรื่อยๆ
    จากเดิมที่ IT เป็นผู้นำเอาเครื่องมือหรือเทคโนโลยีเข้ามา เป็นแค่ a solution looking for a problem to solve ก็เริ่มมีหน่วยงานที่ประสบความสำเร็จในการสร้างโซลูชั่นเพื่อแก้ปัญหาทางธุรกิจด้วยข้อมูล โดยเห็นตัวอย่างได้ชัดเจนจากสองด้าน
    ด้านแรกคืองานด้านการกำกับดูแลอย่าง compliance, regularatory risk reporting, cyber security หรือ trade surveillance ส่วนที่สองคือด้านการสร้างรายได้จากการเรียนรู้และเข้าใจลูกค้ารอบด้านมากขึ้น

  • Smart (Semantic) Data Lake
    ปัญหาข้อมูลกระจัดกระจายในองค์กรเป็นหนึ่งในสถานการณ์ที่พบได้ในทุกองค์กร แนวคิด Data Lake คือการเป็นแหล่งรวมข้อมูลทั้งหมดในองค์กร โดยเก็บไว้ในรูปแบบดั้งเดิมและมีค่าใช้จ่ายต่ำ แต่ Data Lake ก็ยังมีข้อจำกัดในเรื่องของการธรรมาภิบาลข้อมูล (Data Governance – Link) การทำแคตาล็อกข้อมูล และการเชื่อมโยงข้อมูลเข้าด้วยกัน ทำให้ใช้ประโยชน์ไม่ได้เต็มที่นักเทคโนโลยีที่น่าจะเข้ามาช่วยแก้ปัญหานี้ได้เรียกว่า Smart (Semantic) Data Lake (SDL) เป็นการกำหนด “ไวยากรณ์” หรือโครงร่างที่สามารถอธิบายข้อมูลต่างๆ ใน Data Lake ได้ มีการพัฒนา semantic ที่เป็นมาตรฐานเปิด และที่สำคัญคือ หากมีการนำเอาโมเดลเฉพาะธุรกิจการเงิน อย่าง Financial Industry Business Ontology (FIBO) มาใช้ร่วมกับ SDL ก็จะกลายเป็นเครื่องมือที่ทรงพลังในการที่สถาบันการเงินต่างๆ จะใช้ประโยชน์จากข้อมูลที่มีอยู่ได้
  • Democratization of Data Access
    สิ่งที่จะเกิดตามมาอันเนื่องจาก Smart Data Lake ก็คือการเข้าถึงข้อมูลได้ง่ายขึ้น จากบุคลากรภายในองค์กร จากที่เดิมการเข้าถึงและเข้าใจข้อมูลเคยถูกจำกัดอยู่ในวงแคบๆ แค่เจ้าหน้าที่ IT หรือกลุ่ม data scientists ที่สามารถเขียนโปรแกรมดึงข้อมูลมาได้ แต่หาก SDL ใช้ไวยากรณ์ที่เป็นที่เข้าใจกันในวงการ ก็ทำให้บุคลากรอีกเป็นจำนวนมากไม่ว่าจะเป็น analysts, planner หรือแม้แต่ผู้บริหารระดับกลาง ก็จะสามารถสืบค้นข้อมูลและทำการวิเคราะห์ข้อมูลตามความต้องการของตัวเองได้ง่ายมากขึ้น
  • การใช้งาน Big Data Solution ที่เพิ่มมากขึ้นในองค์กรขนาดกลาง
    จากความใหม่และความซับซ้อนของเทคโนโลยี ทำให้ที่ผ่านมา มีแต่หน่วยงานขนาดใหญ่เท่านั้นที่ลงทุนนำ Big Data มาใช้งาน อย่างไรก็ตาม เมื่อ cloud computing ราคาถูกลง เข้าถึงได้ง่ายขึ้น รวมกับเครื่องมือและโซลูชั่นสำเร็จรูปทำให้กำแพงที่เคยขวางกั้นหน่วยงานขนาดกลาง ลดระดับลง เราจะได้เห็นองค์กรในขนาดต่างๆ เริ่มนำเทคโนโลยีใหม่ๆ มาใช้อย่างกว้างขวางมากขึ้น
  • The rise of Big Data Governance
    ในขณะที่สถาบันการเงินส่วนใหญ่เข้าใจและเห็นความสำคัญของงานด้าน data governance คือหากไม่ได้มี enterprise data governance program อยู่ก่อนแล้ว ก็อยู่ในระหว่างการจัดตั้งอยู่
    การมาถึงของ Big Data และ Data Lake จะทำให้ขอบเขตงานของการกำกับดูแลข้อมูล ขยายตัวเพิ่มมากขึ้น จากเดิมที่เคยเป็นเฉพาะข้อมูลแบบโครงสร้างภายในองค์กร ก็ต้องเริ่มมากำกับดูแลข้อมูลแบบ 3V ที่อยู่บน data lake เพิ่มขึ้นอีกด้วย
    ข้อดีอย่างหนึ่งก็คือ การลงทุนในกิจกรรม data governance ไม่ได้มีผลดีเฉพาะกับการกำกับดูแลให้เป็นไปตามข้อกำหนดทางกฏหมายเท่านั้น แต่ยังส่งผลดีต่อการดำเนินงานโดยทั่วไปของสถาบันการเงินด้วย โดยเฉพาะอย่างยิ่งในสภาวะที่การแข่งขันกับคู่แข่งหน้าใหม่อย่าง FinTech กำลังจะเริ่มขึ้น ข้อมูลที่มีคุณภาพคือเสบียงและอาวุธสำคัญที่จำเป็นต้องมี

เรียบเรียงจาก: 5 Big Data Trends Impacting Financial Institutions in 2016

แนวโน้มสำคัญ 6 ประการที่ผลักดันการใช้ Big Data ให้มีประโยชน์เพิ่มมากขึ้น

Six-Megatrendsถึงแม้ว่า ณ วันนี้ Big Data จะไม่ใช่เรื่องใหม่อีกต่อไปแล้ว แต่องค์กรส่วนใหญ่ ก็ยังมองเทคโนโลยี Big Data เป็นเพียงแค่ “ส่วนประกอบหนึ่ง” เท่านั้น ไม่ต่างจากเทคโนโลยี reporting หรือ Business Intelligence ในอดีตมากนัก

 

แต่แนวโน้มสำคัญ 6 อย่างนี้ จะช่วยผลักดันให้เทคโนโลยีที่เกี่ยวข้อง Big Data มีความสำคัญเพิ่มยิ่งขึ้นไปอีก

 

  • Internet of Anything (IoAT) เราคงเคยได้ยินนักวิเคราะห์พูดถึงเรื่องกระแสและความสำคัญของ IoT มาบ้างแล้ว แต่เพิ่งจะในปีนี้เองที่องค์กรต่างๆ เริ่มนำข้อมูลจาก IoT มาใช้เป็นส่วนประกอบสำคัญในด้านต่างๆ ของการทำงาน การหลอมรวมข้อมูลที่ได้จาก IoT เข้ากับข้อมูลอื่นๆ เช่น Social Media, เว็บคลิ้ก และ Server Log สร้างเป็น data products ใหม่ๆ เกิดเป็นกระแสใหม่ที่ทาง Gartner ตั้งชื่อว่า Digital Mesh

 

  • Unified Architecture – จากเดิมที่แพลตฟอร์ม Big Data เริ่มต้นที่ Batch processing แต่เมื่อพัฒนาต่อมาเรื่อยๆ ก็จะเริ่มเห็น architecture ที่เป็นหนึ่งเดียวกันมากขึ้น สามารถรองรับแอพลิเคชั่นขององค์กรได้หลากหลายมากขึ้น ตั้งแต่ batch procesing, realtime processing และ interactive and streaming บนแพลตฟอร์มเดียวกัน

 

  • Consumer 360 ความนิยมของแอพมือถือ ทำให้กิจการต่างๆ เลี่ยงไม่ได้ที่จะต้องเข้าถึงผู้บริโภคในหลากหลายช่องทาง ธุรกิจและบริการใหม่ๆ ที่จะเกิดขึ้นนับจากนี้ นอกจากต้องสื่อสารกับลูกค้าทุกช่องทางแล้ว ยังต้องสามารถผสานข้อมูลจากช่องทางเหล่านั้นได้อย่างมีประสิทธิภาพด้วย

 

  • Machine Learning, Data Science และ Predictive Analytics – เมื่อองค์กรส่วนใหญ่ เริ่มมีความสามารถในการจัดเก็บและจัดการกับข้อมูลจำนวนมาก ขั้นต่อไปคือการนำข้อมูลเหล่านั้นมาแก้ปัญหาเชิงธุรกิจ และนำผลลัพธ์เหล่านั้นย้อนกลับไปปรับปรุงกระบวนการทำงานในระดับปฏิบัติการต่อไป

 

  • Visualization เมื่อข้อมูลมีจำนวนเพิ่มมากขึ้น ความสามารถด้าน data visualization จึงกลายมาเป็นองค์ประกอบบสำคัญเพื่อสื่อสารสิ่งที่ซ่อนอยู่ในข้อมูลเหล่านั้น พัฒนาการของเครื่องมืออย่าง intelligence dashboard และ scorecard นอกจากจะส่งผลให้ Big Data ได้รับความนิยมเพิ่มขึ้นแล้ว ยังทำให้แนวทางการใช้งานข้อมูลเปลี่ยนไปด้วย

 

  • DevOps เมื่อแพลตฟอร์ม Big Data มีบทบาทในองค์กรเพิ่มมากขึ้น แนวทางการพัฒนาและสนับสนุนระบบงานก็ต้องเปลี่ยนแปลงไปด้วย DevOps เป็นแนวทางที่ประสบความสำเร็จในการปรับเปลี่ยนระบบงาน ให้ยืดหยุ่นและรองรับความเปลี่ยนแปลงได้อย่างรวดเร็ว เริ่มมีองค์กรจาก Fortune 1000 หลายแห่งในหลายอุตสาหกรรมอย่างภาคการผลิต บริการทางการเงิน และสาธารณสุข ที่นำ DevOps มาใช้มากขึ้น

 

แนวโน้มเหล่านี้ กำลังทำให้เกิดปรากฎการณ์ที่เรียกว่า Big Data Analytics is everywhere ไม่ใช่เฉพาะในด้านการสนับสนุนการตัดสินใจในองค์กรธุรกิจขนาดใหญ่เท่านั้น แต่กำลังเข้ามามีส่วนร่วมในชีวิตประจำวันของเราทุกคน

เรียบเรียงจาก Six (Mega)Trends for Deriving Massive Value from Big Data

ตัวอย่างการปฏิวัติ Personal Healthcare ด้วยเทคโนโลยีข้อมูล

shutterstock_175646576หนึ่งในวงการที่คาดว่าจะถูกปฏิวัติอย่างขนานใหญ่จากเทคโนโลยีในยุคปฏิวัติอุตสาหกรรม 4.0 ก็คือด้านการดูแลสุขภาพ  ต้นทุนการดูแลสุขภาพจากภาครัฐสูงขึ้นเรื่อยๆ ในขณะที่หลายประเทศรวมถึงไทยก็เข้าสู่สังคมผู้สูงอายุเต็มตัวแล้ว แนวทางการให้บริการด้านสุขภาพจึงจำเป็นต้องปรับตัวอย่างขนานใหญ่

เราเห็นแนวคิดเรื่อง personalized healthcare กันมาพอสมควรแล้ว แต่วันนี้เริ่มมีตัวอย่างการใช้งานจริงมาให้เห็นแล้ว

ไมโครซอฟต์ร่วมมือกับศูนย์สุขภาพ Dartmouth Hitchcock ใน New Hampshire นำเทคโนโลยีหลายอย่างมาใช้ร่วมกันเพื่อสร้างบริการการดูแลสุขภาพที่เฉพาะตัวบุคคลมากยิ่งขึ้น เรียกว่าโครงการ ImagineCare  โดยใช้เทคโนโลยีอาทิเช่น

 

  • Dynamics CRM ใช้เก็บข้อมูลการปฏิสัมพันธ์ระหว่างแพทย์และผู้ป่วย
  • Cortana Intelligence Suite ใช้เพื่อวิเคราะห์และเรียกค้นข้อมูลโดยผู้ให้บริการ
  • Azure Machine Learning เพื่อทำการพยากรณ์โอกาสที่อาจเกิดอันตรายด้านสุขภาพได้
  • Power BI ใช้สร้าง Patient Dashboard ที่ทั้งแพทย์ ศูนย์บริการ และผู้ป่วยสามารถเข้าถึงได้ และรับรู้ข้อมูลที่เปลี่ยนแปลงไป
  • อุปกรณ์ตรวจวัดด้านสุขภาพที่ใช้ในบ้าน เช่น เครื่องชั่วน้ำหนัก ความดัน และเลือด สามารถวัดผลและส่งข้อมูลกลับไปที่ศูนย์ได้ทันที
  • ศูนย์บริการที่ทำงาน 24 ชม. คอยติดตามสุขภาพผู้ป่วย และแจ้งเตือนเมื่อเกิดความเสี่ยงขึ้น
  • Wearable Devices ใช้ส่ง alert จากศูนย์บริการสู่ผู้ป่วยและผู้ดูแล

ตัวอย่าง Patient Dashboard

imaginecare

การทำงานร่วมกันของเทคโนโลยีหลายๆ ส่วน เชื่อว่าจะสามารถส่งผลให้การดูแลสุขภาพที่ดีขึ้น และลดต้นทุนค่าใช้จ่ายโดยรวมลงได้

Dartmouth-Hitchcock revolutionizes the U.S. healthcare system

https://youtu.be/-wVeHZNn8aU

ไมโครซอฟต์ประกาศการสนับสนุน Apache Spark อย่างจริงจัง

microsoft and spark summitในงาน Spark Summit สัปดาห์นี้ ไมโครซอฟต์ประกาศรายละเอียดการสนับสนุน Apache Spark หลายอย่าง ทั้ง Cortana Intelligence Suite, Power BI และ Microsoft R Server

  • Spark for Azure HDInsight เปิดให้ใช้แบบ General Availability แล้วหลังจากเป็น Public Preview มาตั้งแต่กลางปี 2015
  • R Server for HDInsight in the cloud powered by Spark ตัวนี้เพิ่งเปิด public preview ไปเมื่อเดือนมีนานี้ แต่จะเปิดใช้ได้ทั่วไปในช่วงหน้าร้อน (ภายในเดือนสิงหาคม)
  • R Server for Hadoop on-premises now powered by Spark
  • เปิดตัวโปรแกรมฟรี R Client สำหรับ data scientists โดยทำงานร่วมกับบริการต่างๆ เช่น SQL Server R Services, R Server for Hadoop และ HD Insight with Spark สามารถดาวน์โหลด R Client ได้แล้วที่ http://aka.ms/rclient
  • Power BI support for Spark Streaming ซึ่งแต่เดิม Power BI สนับสนุน Spark อยู่แล้ว แต่ตอนนี้เพิ่มการสนับสนุน Spark Streaming ช่วยในการทำงานวิเคราะห์ข้อมูลแบบ real-time

ที่มา : Microsoft announces major commitment to Apache Spark

การทำงานร่วมกันระหว่าง SSRS 2016 กับ Power BI

ssrs-and-powerbiไมโครซอฟต์เพิ่งออก SQL Server 2016 ซึ่งมีการปรับปรุงความสามารถของ SSRS (SQL Server Reporting Services) เพิ่มมาอีกหลายอย่าง วีดีโอข้างล่างนี้อธิบายถึงความสามารถที่จะใช้ SSRS 2016 ร่วมกับ Power BI ซึ่งสามารถสรุปได้ 3 แนวทางดังนี้
  • Upload PBIX ไฟล์ขึ้นไปบน SSRS Web portal แต่ยังต้องเปิดด้วย Power BI Desktop อยู่ดี แต่ใช้ SSRS Web Portal เป็น portal เท่านั้นเอง แต่ก็เป็นตัวเลือกอย่างหนึ่งในการทำ report library ส่วนความสามารถที่จะอ่านไฟล์และ interact กับ PBIX ไฟล์โดยตรงผ่าน SSRS Web Portal นั้น กำลังพัฒนาอยู่ ยังไม่ทราบว่าจะเสร็จเมื่อไหร่

 

  • Power BI Mobile App เชื่อมต่อเข้ากับ Report Server หมายความว่าใช้ Power BI Mobile App เป็น client สำหรับเรียกใช้รายงานที่อยู่บน SSRS แต่ก็มีข้อจำกัดคือ ณ เวลานั้นอุปกรณ์ของเราจำเป็นต้องเชื่อมต่อเน็ตเวิร์คอยู่ เพื่อ access รายงานบน SSRS

 

  • Pin หรือ “ปักหมุด” รายงานหรือ visualization ที่สร้างไว้ใน SSRS ให้มาแสดงผลอยู่ Power BI dashboard ซึ่งจำเป็นต้องมีการ config ให้ SSRS เชื่อมต่อกับ Power BI ในลักษณะ subscription เสียก่อน แถมยังจำเป็นต้องคอย sign-in เข้าสู่ Power BI  ทุก 90 วันด้วย เพราะ authentication token กำหนดให้หมดอายุใน 90 วัน
โดยรวมแล้วยังถือว่า ค่อนข้างผิวเผินและเชื่อมโยงกันไม่ได้สนิทนัก เพราะโครงสร้างที่แตกต่างกันพอสมควร แต่ก็เป็นจุดเริ่มความพยายามที่จะตอบสนองผู้ใช้ทั้งสองกลุ่ม คาดว่าจะยังคงมีการเพิ่มเติมความฟีเจอร์ หรือปรับให้มีความสะดวกเพิ่มมากกว่านี้อยู่เรื่อยๆ
ไปดูรายละเอียดได้จากวีดีโอเลยครับ